New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators

نویسندگان

  • Luong Dang
  • LUONG DANG
چکیده

We introduce a new class of Hardy spaces H(R), called Hardy spaces of Musielak-Orlicz type, which generalize the Hardy-Orlicz spaces of Janson and the weighted Hardy spaces of Garćıa-Cuerva, Strömberg, and Torchinsky. Here, φ : R × [0,∞) → [0,∞) is a function such that φ(x, ·) is an Orlicz function and φ(·, t) is a MuckenhouptA∞ weight. A function f belongs to H(R) if and only if its maximal function f∗ is so that x 7→ φ(x, |f∗(x)|) is integrable. Such a space arises naturally for instance in the description of the product of functions in H(R) and BMO(R) respectively (see [6]). We characterize these spaces via the grand maximal function and establish their atomic decomposition. We characterize also their dual spaces. The class of pointwise multipliers for BMO(R) characterized by Nakai and Yabuta can be seen as the dual of L(R)+H (R) where H (R) is the Hardy space of Musielak-Orlicz type related to the Musielak-Orlicz function θ(x, t) = t log(e+ |x|) + log(e+ t) . Furthermore, under additional assumption on φ(·, ·) we prove that if T is a sublinear operator and maps all atoms into uniformly bounded elements of a quasi-Banach space B, then T uniquely extends to a bounded sublinear operator from H(R) to B. These results are new even for the classical Hardy-Orlicz spaces on R.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anisotropic Hardy Spaces of Musielak-Orlicz Type with Applications to Boundedness of Sublinear Operators

Let φ : ℝ(n) × [0, ∞)→[0, ∞) be a Musielak-Orlicz function and A an expansive dilation. In this paper, the authors introduce the anisotropic Hardy space of Musielak-Orlicz type, H(A)(φ)(ℝ(n)), via the grand maximal function. The authors then obtain some real-variable characterizations of H(A)(φ)(ℝ(n)) in terms of the radial, the nontangential, and the tangential maximal functions, which general...

متن کامل

Boundedness of Marcinkiewicz integrals with rough kernels on Musielak-Orlicz Hardy spaces

Let [Formula: see text] satisfy that [Formula: see text], for any given [Formula: see text], is an Orlicz function and [Formula: see text] is a Muckenhoupt [Formula: see text] weight uniformly in [Formula: see text]. The Musielak-Orlicz Hardy space [Formula: see text] is defined to be the set of all tempered distributions such that their grand maximal functions belong to the Musielak-Orlicz spa...

متن کامل

Notes on approximation in the Musielak-Orlicz sequence spaces of multifunctions

We introduced the notion of (X, dist,V)-boundedness of a filtered family of operators in the Musielak-Orlicz sequence space Xφ of multifunctions. This notion is used to get the convergence theorems for the families of X-linear operators, X-distsublinear operators and X-dist-convex operators. Also, we prove that Xφ is complete.

متن کامل

Endpoint boundedness for multilinear integral operators of some sublinear operators on Herz and Herz type Hardy spaces

The purpose of this paper is to study the endpoint boundedness properties of some multilinear operators related to certain integral operators on Herz and Herz type Hardy Spaces. The operators include Littlewood-Paley operator and Marcinkiewicz operator.

متن کامل

Strongly almost ideal convergent sequences in a locally convex space defined by Musielak-Orlicz function

In this article, we introduce a new class of ideal convergent sequence spaces using an infinite matrix, Musielak-Orlicz function and a new generalized difference matrix in locally convex spaces. We investigate some linear topological structures and algebraic properties of these spaces. We also give some relations related to these sequence spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016